
LeapMotion Visualisation System (LVS)
Leap Motion Controlled Data Manipulation

Using Visualisation Toolkit

Chun Yin, Tsang
Student ID: 1467193

Supervisor: Dr. Hamid Dehghani

Submitted in conformity with the requirements
for the degree of BSc. Computer Science

School of Computer Science
University of Birmingham

Copyright c© 2016 School of Computer Science, University of Birmingham

Abstract

LeapMotion Visualisation System (LVS)

Leap Motion Controlled Data Manipulation

Using Visualisation Toolkit

Chun Yin, Tsang

Visualisation was becoming more important in our daily lives. For example, medical applications,

academic software and computer games were often required to display information in 3-dimensions.

In the meantime, gesture interface was also becoming more popular as it had been applied to various

commercial products and applications. However, most of the existing visualisation software had a

complex UI and did not support gesture interaction. Therefore, we developed a new visualisation

software that can overcome these deficiencies. The software included three main component, a Ges-

ture Interface, VTK and the integrated GUI. A series of tests had been conducted and the result

was recorded.

Keywords: Leap Motion, Visualisation Toolkit, Gesture Recognition, Java, Human-Computer

Interaction

2

Acknowledgments

This project would not been gone this far without the help and support from many people. First,

I would like to express my sincere gratitude to my supervisor, Dr Hamid Dehghani, for guiding

and support me no matter on related knowledge or equipment throughout the project. Secondly,

I would like to thank the participate who spent their time to complete the functional test and

recognition test. These participates including the Ph.D. Students in the Medical Image Laboratory

of University of Birmingham and also my friends. A special note of thanks to Dr. Alexandre

Dufour, from the ICY developing team who helps me on solving the compatibility problem of VTK

with Java and Mac.

3

All software for this project can be found at

https://codex.cs.bham.ac.uk/svn/projects/2015/cyt493/

4

Contents

List of Abbreviations 7

1 Introduction 8

1.1 Project Aims . 8

1.2 Project Overview . 8

1.3 Motivation . 8

1.4 Report Outline . 9

2 Literature Review 10

2.1 Gesture Analysis . 10

2.2 Motion Detectors . 14

2.3 Visualisation Toolkit . 16

3 Problem Analysis 17

4 Solution Design 18

4.1 Methodology . 18

4.2 Project Plan . 18

4.3 System Architecture . 19

4.4 GUI Design . 20

5 Implementation 21

5.1 Overview . 21

5.2 Gesture Analysis . 21

5.3 Visualising with Visualisation Toolkit . 25

5.4 Integrated System . 28

6 Testing 36

6.1 Unit Testing and Integration Testing . 36

6.2 Functional Testing . 37

6.3 Usability Testing . 38

6.4 Recognition Rate Testing . 39

7 Evaluation 40

7.1 Related Work . 40

7.2 System Performance . 41

7.3 Other Aspect . 42

5

8 Discussion & Future Work 46

8.1 Programming Language for Implementation . 46

8.2 Gesture vs Mouse . 46

8.3 Gesture Management . 46

9 Conclusion 47

10 Bibliography 48

11 Appendix 51

11.1 System Requirement . 51

11.2 Structure of Zip . 51

11.3 Installation . 51

6

List of Abbreviations

LVS Leap Visualisation System

VTK Visualisation Toolkit

HCI Human-Computer Interaction

DOF Degrees of Freedom

FEMD Finger-Earth Mover’s Distance

API Application Program Interface

GUI Graphical User Interface

UI User Interface

7

1 Introduction

1.1 Project Aims

The aim of the project is to create a new visualisation system with a gesture interface. In contrast

to similar software, the project aims to deliver a system with a much user-friendly interface such

that it is easy to learn. Also, the system should be able to maintain its own file system to eliminate

duplicated work. Lastly, the system should also maintain a smooth rendering process and allow

user-customisation in several areas.

1.2 Project Overview

Visualisation has become more common in various academic researches areas other than medical

imaging. After reviewing available visualisation software in the market, we have found that most

of them have complex UI and are difficult to learn. Meanwhile, although traditional I/O device

that used by these software like mouse and keyboard, provides a reliable and accurate interaction.

In some particular cases like during a surgery or a presentation, neither mouse nor keyboard, is

appropriate for communicating with 3D information. Considering manipulating 3D information

is the emphasis of visualisation, a more appropriate solution should be introduced. Gesture was

said to be the most natural way for human to communicate. This also applies to human-machines

interaction. Yet, most of the existing visualisation software that allow gesture interaction are

mainly designed for surgical uses only. To overcome these deficiencies, we have developed a new

visualisation system that supports gesture interaction for general uses. The system consist of two

major components: 1) gesture analysing and 2) 3D model visualising. Upon implementation of the

system, we have also conducted several testings in order to evaluate the system.

1.3 Motivation

Computer scientists have been working on gesture analysis throughout the past three decades. In the

past five years, the attention of the public on this aspect had a significant rise. This has been partly

due to some technological breakthroughs such as 3D printing and Virtual Reality. Undoubtedly,

we can foresee that visualisation and gesture interface will be widely used in the society for the

next few decades. Therefore, learning or getting in-touch with related technologies will be the best

starting-point for me to step into the area.

In the meantime, a new motion detector named Leap Motion has been released to the market

recently. This device is specifically designed for PC and it provides a simple framework that

facilitates gesture analysis. Until now, the device has been released for 3 years, however, most of its

related software has been focusing on gaming. Therefore, it would be interesting and challenging

to develop a software using this device for non-gaming purposes.

8

1.4 Report Outline

In section 2, we will present some background information that is related to the project. Following

the background, section 3 will be a detailed analysis of the problems like projects requirements. In

section 4, we will describe our solution design that can answer the questions raised in section 3. In

section 5, we will demonstrate how the solution is implemented. In section 6, we will interpret our

testing results. In section 7, we will evaluate the system based on various important aspects, for

instance, the system performance. Finally, in section 8, we will discuss several further extensions

to the project.

9

2 Literature Review

2.1 Gesture Analysis

Gesture is a non-verbal communication language, it can be represented by our body parts including

hands, feet or even eyes. By using this language, human can interact with machines without any

tradition I/O devices such as mouse and keyboard. In recent years, there has been a considerable

effort made in the application of gesture interface in various devices and applications such as mobile

phones, televisions and Virtual Reality Head Sets. These researches focus on different body gesture,

one of the important research was done by Vladimir et al. [22]. They claimed that, it is natural

and sufficient enough to use index finger to explore virtual objects. Therefore, among all types of

gestures, the following paragraphs will mainly focus on hand gesture recognition.

According to Michal and Ying [16, 26], hand gesture analysis could be separated into two stages

(Figure 1). The first stage is Hand Localisation, which aims to track the movement of user’s hands

and to locate the hands in the images. These images could be analysis by different methods, for

instance, in form of histograms. After that, the data will be used for Gesture Recognition, and

classified into various gesture types.

Figure 1: Levels of Gesture Analysis

2.1.1 Hand Localisation

The accuracy of gestures rely on trustworthy, real-time hand position and pose data. Accordingly,

extracting correct hand features is the emphasis of this stage. In general, features like fingers and

palms are usually extracted, but some devices like Leap Motion, more features like metacarpals

(palm bones) and phalanges (finger bones) can also be extracted.

In order to extract those features from a complex background, throughout the past few decades,

several methods had been developed and widely used in related researches. These methods can be

grouped into two categories: Glove-Based method and Vision-Based method [3, 9, 10].

10

Glove-Based Approach Glove-Based approach usually requires users to wear a sensor device

for digitising hand and finger motions into multi-parametric data. Sometimes, colour markers are

used instead in order to provide colour cues. Shahram J et al. [20] demonstrated a wrist-worn IMU

(Inertial Measurement Unit), which features on transmitting three-axis accelerometer and other

geometrical data wirelessly as to interact with medical images for surgical uses. With the help of

modern technologies, users no longer require to wear a cumbersome device which carries a load of

cables. However, as Vladimir et al. [22] mentioned , Glove-Based approaches still do not completely

fulfill one important requirement of HCI: Naturalness.

Vision-Based Approach The solution to overcome the limitation imposed by Glove-Based ap-

proach bring us to the Vision-Based approach proposed by Turk and Kolsch [15]. In contrast to

Glove-Based, Vision-Based approach uses computer vision in order to sense and perceive users and

their actions within a HCI context. Recently, depth cameras are commonly used in this approach

to provide depth cues rather than color cues from data-gloves [28]. However, this approach also

raises several challenging problems which researchers have been solving over the last decade. For

example, background invariant, light insensitive and person independent, these problems must be

solved to achieve sufficient real-time performance. In [19] the author mentioned several common

assumptions could be made including: assuming high contrast stationary backgrounds and ambient

lighting conditions. Later on, we will discuss about the devices in current market that could resolve

these problems.

In summary, under the assumptions mentioned above, Vision-Based approach is a better way to

implement the gesture interface for any software since it provides a more natural human computer

interactions.

2.1.2 Gesture Recognition

The emphasis in gesture recognition is how to make the hand gestures understood by the system.

However, there are two associated questions proposed by Vladimir et al. that we have to aware: 1)

How to optimise partitioning time-model parameter space? 2) How to implement the recognising

procedure? To overcome this, they have introduced two types of Spatial Gesture Model(Figure 2):

3D Hand Model-Based and Appearance Based.

11

Figure 2: Spatial Gesture Models [22]

3D Hand Model-Based Approach 3D Hand Model-Based approach focus on recovering the

three dimensional configuration of articulated body parts from 2D images. Considering the human

hand has a complex anatomical structure consisting of 27 bones, they can be divided in three

groups: carpals (wrist bones - 8), metacarpals (palm bones - 5) and phalanges (finger bones -

14). These three groups of bones are connected by joints naturally, however, some of them have

very limited freedom of movement, for instance, carpal-metacarpal joints. James and Takeo [5]

have demonstrated a system called DigitEyes, and proposed that by using 27 DOFs, the bones and

joints could be translated to angles or even vectors. This method could eliminate many unnecessary

calculations by reducing the size of the parameter space.

Appearance-Based Approach Appearance-Based approach uses two dimensional information

such as gray scale image, edges or body silhouettes. For example, image features from training

set are used to model the visual appearance of the hand, these parameters will then be used to

compare with the extracted image features from the video input. The approach can provides better

real-time performance, since easier 2D image features are employed. Zhou [28] demonstrated with

the aid of FEMD, the recognition was performed by matching only fingers but not the whole hand

shape. However, the detection is highly sensitive to lighting conditions, without strictly controlled

working environment the robustness of the system will decrease rapidly.

In conclusion, Appearance-Based has faster real-time performance, but 3D Hand Model-Based

provides a rich description that widen the class of hand gestures and its robustness. The comparison

of each levels of approaches are listed below (Figure 3.1 & 3.2).

12

Figure 3.1: Localisation Level Approaches Figure 3.2: Recognition Level Approaches

2.1.3 Types of Gestures

In HCI perspective, gestures are classified into two classes: Static (hand pose) and Dynamic (hand

movement) [2]. The main difference between static and dynamic are the number of frames the

system requires to identify the gestures. Generally speaking, a Static Gesture is single frame

oriented where it could be recognised from particular hand configuration or pose. Whilst Dynamic

Gesture involve more than one frames with continuous motions over a short time span. In all

scenarios, a Dynamic Gesture will have a start state and end state, but not a specific start and end

position.

13

2.2 Motion Detectors

Over the past 3 decades researchers have been working on developing different methodologies and

devices to facilitate hand and gesture recognition [17]. Referring to previous section, naturalness is

an important and recent interested aspect in HCI, therefore, the followings will only focus on depth

cameras but not data-gloves.

Different from data-gloves, depth camera provides a depth map contains information relating to

the distance of the surfaces of scene objects from a steady viewpoint. Although it does not provide

direct hand data or color cues, it can still supply sufficient information and fulfilling naturalness for

gesture recognition. The followings discuss about two of the most popular sensor that commonly

used by researchers.

2.2.1 Microsoft Kinect

Microsoft Kinect is one the most popular sensor in the market. Originally, the sensor was developed

for game console XBox 360. After several enhancements, due to its variety in supported platform

and high performance, it has been frequently used in computer vision related research.

The sensor consists of infrared projector, infrared camera and RGB camera, nonetheless, it also

accepts voice input. Although the sensor does not study particular features itself, this behaviour

provides much more variation which facilitates research in many aspects, such as indoor robotics

and 3D scene reconstruction. The software development toolkit allows developers to write Kinect

applications in C++, C#, Visual Basic and .NET. Zhou R (2011) in [29] demonstrated a hand

gesture recognition system that operates robustly in uncontrolled environments with Kinect sensor.

2.2.2 Leap Motion

In contrast to Kinect, Leap Motion explicitly targeted to hand gesture recognition. The device

consists of two monochromatic Infrared cameras and three infrared LEDs, covering a roughly hemi-

spherical area within 1 meter and with precision up to 0.01 millimeter. Hand position and pose

data are described by a list of vectors. Different from Kinect, these information is extracted from

a depth map (figure 4) and provided by the API that comes with Leap Motion controller. The

device employs a right-handed Cartesian coordinate system (figure 5). The origin is centered at the

top of the Leap Motion controller. After configuration, an interaction box with the same size as

the primary screen can be set up. This methodology facilitates the capture of movement and hand

data which can be used for further gesture recognition process.

14

Figure 4: A picture capture by Leap Motion Figure 5: Leap Motion coordinate system

Tracking Model The API defines a Tracking Model - ”Frame” (figure 6) which contains lists

of primary tracked objects, for instance, hands, fingers, tools and gestures. All the pose data is

represented in forms of Vector. The tracking model can support multiple hands tracking, but as

recommended keeping two hands only can optimal the motion tracking quality.

Figure 6: Tracking Model - ”Frame” [6]

15

2.3 Visualisation Toolkit

Visualisation Toolkit is an open-source library developed on C++ but it also supports automated

wrapping of the C++ core into different languages, for example, Java and Python. The library is

designed for 3D computer graphics, image processing and visualisation. The library is large and

complex, which requires developer to spend time on studying its basic object-oriented design and

implementation methodology before developing. Huang (2011) in [27] shows an example on using

the surface and volume rendering function from the library.

2.3.1 Structure and Pipeline

Regarding the library is highly and heavily object-oriented, it has its own architecture and delivering

pipeline. First, all the files must be decoded by a ”vtkReader” into a ”vtkDataSet” model. Various

models can be produced including Poly Data, Structured Grid and Unstructured Grid, these three

are the most commonly used models. The model can then be modified by different filters or

functions recursively. Another way will be passing the model to a ”vtkDataMapper” that being

mapped to a ”vtkActor”. This process will convert the model into a viewable object. In order to

display and interact with the object, a ”vtkRenderer” and a ”vtkRenderWindowInteractor” will act

as the terminals of the pipeline. In the meantime, different widget and color map are also supported

by the library to facilitate different visualising conditions. A simple pipeline can be found in the

following diagram (figure 7).

Figure 7: Example of simple VTK Pipeline

16

3 Problem Analysis

The product of this project is a large-scale system, and the libraries require time to study. Therefore,

we assumed that the structure of some components like VTK might change from time to time. And

thus, it is important to choose an adaptive software engineering approach for this project. Also,

we have to decide which program language and platform is the best for implementing this project.

Nonetheless, there are several problems we have to consider and to decide before developing the

system.

• How to detect movement and recognise hand ?

• How to visualise the data models ?

• How to convert the output from recognition to the visualisation system ?

• How to create an effective and user-friendly GUI ?

• How to maintain a smooth user interaction

Last but not least, the product should fulfill all of the main requirements that high-lighted as

follow:

Functional Requirements

1. The system should be able to accept multiple file extensions.

2. The system should be able to provide at least 3 commonly used visualisation functions.

3. The system should be able to save all user changes on the filters/functions.

4. The system should be able to recognise and provide basic gesture interaction.

Non-Functional Requirements

1. The system gesture recognition module should be robust and efficient.

2. The overall performance of the system should be smooth and effective, especially on the

visualisation module.

3. The source code of the system should be written clearly and logically. It should be well

commented and accompanied by appropriate document(e.g. Java Doc).

4. The system should have a significant error handling approach so as to achieve high main-

tainability.

17

4 Solution Design

4.1 Methodology

Referring to the review in Section 2, we have chosen to use Leap Motion for gesture analysis, Java

as the language for implementation and Swing for GUI development.

There are plenty of reasons on choosing the above options. First, Leap Motion is one of the most

popular depth camera in the market. It was the best option not only of its portable size, but also

its was designed specifically for PC users. In the meantime, the API that comes with the device

enhances the progress of gesture analysis. The API provides all the basic information required

for developing custom gestures and motion tracking. These information included position and

orientation of finger and palm, all of them are given in form of vector. Mentioned by Vladimir (1997)

[22], fingertip detection was used to be non-trivial in either 3D or 2D space. Now, Leap Motion

provides an easy and convenient solution. By using these information, the gesture recognition and

management process could be easily implemented in short period of time.

On the other hand, we choose Java as the language for implementation because both Leap

Motion and VTK have automated core wrapping which support Java development. Moreover, we

could spend more time on studying the Leap Motion and VTK libraries, since we do not have to

learn another programming language from scratch.

Lastly, Swing is not the best option for GUI implementation but it still provides functions that

we need for designing a simple GUI. In fact, Qt will be another option, but it is not compatible

(See section 8.1 for details). Hence, the whole GUI was developed by Swing with the aid of AWT

only.

4.2 Project Plan

The project was large in scale consisted of different modules, therefore, we have separated it into

three stages. Gesture Recognition, focusing on Leap Motion and the gesture analysis processes,

except the four default gestures provided by the API we proposed to design nine more custom

gestures.VTK, focusing on the VTK library, designing a dynamic pipeline and implementing at

least three important functions. Integrated System, making use of the previous two modules and

combine them into a single system.

Throughout each stage, a prototype was built, unit and integration testing was performed to

make sure each component was working before the final integration. After the final integration,

the integrated system was undergone additional testing such as functional and usability testing. A

code review was carried out as well to optimise the system efficiency. A Gantt Chart can be found

in the ”Additional materials” which describes the details of the plan.

18

4.3 System Architecture

In order to increase the system’s flexibility and maintainability, a software architectural pattern,

Model–view–controller was being used for implementing the user interface. The architecture di-

vides the system into three interconnected parts, which could separate internal representations of

information from the interface presented to users.

The system consisted of three part, model, controller and view (Figure 8). A Model directly

managed the data, logic and rule of the system. For instance, ”VTKDataSet” was the model of all

visualising object model; ”CustomGesture” was the model of all gestures that we defined. A View

could be any form of output representation of the model. For instance, ”Dialog” could be used to

present system preferences to users for customization (See section 5.4.5 for details). A Controller

accepted the user input and converts them into commands for the view or model. Each component

had its own controller, whilst a ”SystemController” was used to connect all the other controllers.

Under this architecture, whenever there was a change, it could possibly replace only a single part

rather than the whole component. These approach minimized the work which would be required

for any further system modification.

Figure 8: LVS system architecture

19

4.4 GUI Design

Except considering the functionality of the system, this project also aimed to provide a clean and

simple GUI to users. Visualisation usually requires many algorithm and options, for instance, when

a user is applying a contour filter to a model. The user might need to change the range or values

of the filter in order to view different layers of the model. Sometimes, the user might even want to

change the color mapping for a more clear view. Most of the existing software have implemented

many buttons and panel to allow users to perform such modifications (Figure 9). Although it

could provide good functionality, it was too complex to use, much less easy for new users to learn.

Therefore, this project aimed to create a more simple and user-friendly GUI with the aid of gesture

interface.

Figure 9: Example of Complex GUI - ParaView

The solution could be done by only providing a number of important buttons or panels to users.

Furthermore, some buttons could be merged to the Display Panel which only appear when that

filter was enabled. Additionally, several frequently used functions might even mapped directly to the

gesture interface. In our system, we introduced an over-layer mechanism to eliminate unnecessary

graphic representation (See section 5.4.3 for details).

20

5 Implementation

5.1 Overview

The implementation was divided into three stages, focusing on different components of the system.

A prototype was built in each stage. The followings discuss the chosen methodology in each stage.

5.2 Gesture Analysis

Gesture provide a higher level of interaction rather than directly tracking hand movement or par-

ticular hand features. With the aid of gestures, various commands can be sent by users to the

system. The API that comes with Leap Motion offers 4 default gesture:

• Circle - A single finger tracing a circle

• Swipe - A long, linear movement of a finger

• Key Tap - A tapping movement by a finger as if tapping a keyboard key

• Screen Tap - A tapping movement by finger as if tapping a vertical computer screen.

Even though, these gestures provided some simple control mechanism, it was not enough for a

visualisation system. To compensate this, we have implemented nine more gestures that could be

easily remembered by users, including: Pointing, Two Fingers, Three Fingers, Four Fingers, Flow,

Stop, Fist, Hold and Clap Gesture.

Pointing Gesture Only index finger is extended and pointing towards the screen.

Two Fingers Gesture Only index and middle finger are extended moving inwards to or outwards

from the screen.

Three Fingers Gesture Only index, middle and ring finger are extended.

Four Fingers Gesture Except thumb all other fingers are extended.

Flow Gesture All fingers are extended and the palm is in horizontal position with all fingers

pointing towards the screen.

Stop Gesture All fingers are extended and the palm is in vertical position with all fingers pointing

upward.

21

Fist Gesture All fingers are not extended, holding like a fist.

Hold Gesture Only thumb and index finger are extended.

Clap Gesture Fingers in both hand are extended and the palm moving towards each other like

clapping.

Referring to section 2.2.2, although the ”Frame” object return by the API provides gesture

information, the API itself is not viewable. Hence, we have no information on how the default

gestures were being recognised and managed. Therefore, we have to implement those custom ges-

tures and managing them by ourselves. There are several machine learning approaches used by

researchers, for instance, applying Principal Component Analysis and Support Vector Machines for

classification. These methods are frequently used and being proven throughout the last decades.

However, based on the information the ”Frame” object provides, we used another way to implement

the gesture analysis. Except default gestures information, the ”Frame” actually provides a ”Han-

dList” and ”FingerList”. A ”HandList” contains a number of hands detected by the sensor, palm

position and orientation could be extracted from a ”Hand” object. A ”FingerList” can be directly

obtained from ”Frame” or even ”Hand”, each ”Finger” has a type indicated which finger it is, such

as thumb and index. An extended status could also be acquired from it. With the aid of these

information, we could design our custom gestures by setting different pose ranges and conditions

for each gesture.

Lee and Kunii (1993) [8] demonstrated that 3D locations of five fingertips, and palm define a

hand pose. Hence, when implementing each custom gestures we considered in two aspects, finger

status and hand pose. In finger status, we check the extended status of each recognised finger;

while in hand pose, we check the position and orientation of detected palm. Giving Flow Gesture

as an example (Figure 10), the system would first check whether all fingers extended, following by

a hand pose checking on the orientation of detected hand.

Figure 10: Example Codes of Custom Gesture

22

All the implemented gestures are held by a list, which the list would then be used for the

recognition process, therefore, the sequences of the list represent the priority of gesture being

recognised. Same as the Leap Motion’s API, whenever a gesture was being recognised, a gesture

type in format of Enum would be returned. The return value would then be used by other part

of the system, such as displaying in the GUI. In the meantime, a command would be sent to the

controllers, if there was any function mapped to the gesture. If we wished to change the mapped

function, we could just change the command of that model easily. An activity diagram (Figure 11)

was used to show the process of the gesture recognition.

Figure 11: Activity Diagram of Gesture Analysis Process

The implemented gestures was actually divided into two categories: Static Gesture and Dynamic

Gesture. It was important to mention the implementation of Static Gesture and Dynamic Gesture

were actually opposite to their name. Where Static Gesture was recognised per frame while Dynamic

Gesture involves multiple frame having a start status and end status. Due to this characteristic,

Static Gesture was normally mapped to movement functions, for instance, a user performed Pointing

Gesture and moved along the screen in order to move the cursor. On the other hand, Dynamic

23

Gesture was recognised by a sequences of movement which makes it unfavourable for movement

function. Hence, it was usually mapped to single operation. For example, Clap Gesture was

recognised when two hands moving towards each other, users could use this gesture to terminate

the software.

There was one more thing, the system had its own recognition mechanism to assist left-handed

or right-handed user. Most of the Static Gesture were single handed, which means the system had

to choose the correct hand to analysis the gesture. To solve this, the system allowed users to set

the hand preference (See 5.4.5 for details). If a user was a right-handed person, the ”Style-hand”

would be representing their right hand, whilst ”Sub-hand” would be their left hand. Based on

the user settings, the system would automatically choose the ”Style-hand” to perform analysis for

Static Gesture. Differently, some Dynamic Gesture would use both ”Style-hand” and ”Sub-hand”

like Clap Gesture.

Although we had considered to include more two handed Static Gesture in our system, its

performance was unsatisfying. During the development stage, we had tried to implement a two

handed gesture for movement functions. The gesture consisted of both hand, which the ”Sub-

hand” would be used to decide the type of operation while the ”Style-hand” would be used to

capture the targeted movement. However, we found that under this approach, when user’s hands

overlap each other the sensor would lost track to both hands. These was due to the limitation of the

sensor. Normally, the sensor was placed on top of the desktop and this causing the sensor having

trouble to detect the hand when it was overlapping. Therefore, we decided to implement single-

handed Static Gesture only. The following table showed the implemented gestures and mapped

functions.

Gesture Hand Category Function

Pointing Single Static Moving Cursor

Two Finger Single Static Zoom

Three Finger Single Static Slice Translate

Four Finger Single Static N/A

Flow Single Static Rotation

Stop Single Static Show Gesture Cheat List

Fist Single Static Repositioning

Hold Single Static N/A

Clap Both Dynamic Terminate System

Click(D) Single Dynamic Interact with Buttons

Swipe(D) Single Dynamic Switch displaying Actor

D - Default Gestures provided by Leap Motion API

24

5.3 Visualising with Visualisation Toolkit

VTK is a huge library that consists of many visualising algorithms. In the meantime, it has its

own object-oriented design and implementation methodology, hence, a clear pipeline has to be

constructed to optimise the efficiency. The subsection 5.3.1 will focus on the pipeline we have

constructed for this project while subsection 5.3.2 - 5.3.4 will focus on the algorithm we choose to

apply .

5.3.1 LVS’s VTK Pipeline

In section 2.3.1, we had introduced the simple pipeline of VTK, but in fact, each level of the pipeline

had various implementations. Therefore, among all the classes we had chosen several emphases to

implement along with the pipeline (Figure 12) constructed specifically for LVS. There were couples

of levels we would like to highlight.

Figure 12: VTK pipeline of LVS

25

Reader VTK supports more than fifteen data file extensions, including VTK, Bitmap, JPEG

and etc. Among all the extensions, we have chosen to implement two of them: VTK and STL.

VTK was a Simple Legacy Format commonly used for medical images. The file mainly consisted

of five basic parts: 1) file version and identifier 2) header 3) file format 4) dataset structure 5)

dataset attributes. Another type STL was commonly used in 3D printing. These two file types

were easy to read and write either by hand or program. Each of them required an individual reader

to convert the file to a dataset object which then could be used to apply various algorithms. Indeed,

if the system required to support more extensions, the current pipeline could be easily modified

by adding few lines in the class VTKController. Other than extension, each data model had its

own data structure, including: Poly Data, Unstructured Grid and Structured Grid. Sometimes, a

specific data structure reader was required instead.

Widget VTK had numbers of widget that could enhance user experience. Each widget was the

same as an actor, but some of them required support from other levels. For instance, scalar bar

widget required a look-up table to map the scalar range with appropriate color from color map. In

our system, we had implemented scalar bar and orientation widget to improve our system’s user

experience.

Algorithm The library provided different algorithm, expedited the development and enhanced

the variety of functions. However, we could not implement all of them, therefore, we had to

select three of them which were commonly used: Threshold, Contour and Slice. In some other

software’s pipeline, users could apply the algorithm recursively. Since the recursive pipeline was

too complicated and time consuming, thus, our system had chosen to implement a straight forward

pipeline at the moment. Still, the system could allow to display multiple algorithm result of the

same file at once.

5.3.2 Threshold

Threshold showed all values in particular range. Users could set the minimum and maximum range

to filter out unnecessary data. It was a simple function with not much parameter could be applied,

but still an important algorithm in visualising.

5.3.3 Contour

Contour was similar to threshold but showing lines or surfaces of constant scalar value rather than

all the value within the range. In VTK, users usually apply a scalar range or exact value to view

particular layer of the model. In our implementation, users could edit the values in the edit dialog

(Figure 13). In addition, when a user was setting a scalar range, a step which indicated numbers

26

of exact value was also required. When valid range and step had been applied, the system would

calculate the exact values automatically.

Figure 13: Contour Editing

5.3.4 Slice

Slice was a function which helped users to investigate the cross-section of a 3D model. It required

a plane and a cutter function. The plane was used to set the position and orientation of the cross

section, while cutter was used to extract the data lies on the plane.

Whenever a user wanted to change the cross section, apart from traditional way by editing the

preference and moving by mouse, our system allowed users to interact with the panel by gestures.

When the advance slice translate function was enabled, users could use Three Fingers gesture to

translate the slice (Figure 14).

Figure 14: Screen Shot of Slice Translate Function

27

5.4 Integrated System

Making use of the prototype of previous stages, an integrated system name Leap Visualisation

System (LVS) was built. Due to compatibility reason, Swing and AWT were used to develop the

GUI rather than another popular library Qt. The system consisted of three main modules, gesture

analysis, VTK and GUI. The core of first two modules had been explained in the above section.

Thus, the following subsection would first focus on the Main Frame and then on several highlighted

features.

5.4.1 Main Frame

The integrated GUI (Figure 15) aimed to be simple and clean. The main frame contains four

components: Toolbar, File Tree, VTK Panel and Status bar. The Toolbar provided basic function,

such as open or save a LVSFile, import a data model file and changing color map. The bigger size

of the buttons were designed for gesture interaction. The File Tree on the left was a realizable

panel, which showed all the imported data model files. Every file had a list of node showing the

filter/algorithm options. Each file also had an index number which was used for referencing in the

toolbar for switching actors. The VTK Panel was used to display the visualised object. On the

left bottom corner was an orientation widget indicating the current orientation of the 3d space.

Finally, the status bar showed the system status, for example, after a file being successfully loaded,

it would show the file name and path, or else an error message would be shown.

Figure 15: Screen Shot of LVS GUI

28

5.4.2 File System

Throughout a visualising experience, users might need to import a number of data model files.

Additionally, users might have to apply or configure various filter for each file. Such that, to

facilitate users from repeated work, it was important to save the substantial controls or operations

that the user had carried out. To overcome this, we had introduced a unique file system in our

software. The file object called ”LVSFile” (Figure 16) containing the file name, path and also a list

of ”FileItem” (Figure 17). Each file item represented a single imported data model file. Except basic

file information, the ”FileItem” contained visualising parameters such as visibility and opacity as

well. Nevertheless, there were different filter/algorithm objects too, for example, a threshold object

stored the user’s configuration on minimum and maximum range.

Figure 16: Fragment of ”LVSFile” Figure 17: Fragment of ”FileItem”

When a user created a new project, the user could open an existing ”LVSFile” or created a

new one by clicking the ”New File” button in either toolbar or menu-bar or even using hot keys.

Alternatively, a user could also directly import a data model file, if there was no opened ”LVSFile”

the system would automatically created a new one. However, if a user created a new one without

saving the current copy, the system would alert the user and remind them to save it. Finally, after

every open or import operation, the system would automatically save the path that the user has

accessed recently.

Figure 18: System Message - Saving Alert

29

5.4.3 Over-Layer

To reduce the complexity of the GUI and eliminate unnecessary buttons appearing, an over-layer

had been designed for the system. There were many ways to implement the layer, but we had

chosen to use a transparent JFrame placing on top of the main frame. The over-layer was actually a

canvas which the system could draw different GUI presentation, like points or buttons, based on the

required functionality. The main reason of choosing this approach was due to the different drawing

sequence of the graphic components. VTK Panel used AWT while the rest of the components

used Swing instead. Such that, if we included the canvas on the main frame, part of it would be

overlapped and covered by the VTK Panel.

Currently, the over-layer had three main features: Movement Tracking, Gesture Tracking and

over-layer buttons.

Figure 19: Screen Shot of Demonstrating Over-Layer

From the above figure, we could see that when the movement tracking and gesture tracking

function was activated, the green dots would appear indicating the position of user’s fingers, whilst

the blue dot representing the center of user’s palm. Users might change the color from the edit dialog

(See section 5.4.5 for details). Furthermore, on the right-side of the screen a small diagram would

appear when a gesture was being recognised. Meanwhile, a short text under the diagram showed

the operation that the recognised gesture could perform. These feature allowed users to know the

current interacting situation which helped the users to communicate with the system. Apart from

that, the over-layer button would appear when certain function is activated, for instance, slice

translate function (See section 5.3.4 for details).

30

5.4.4 Color Map

During different visualising situations, users might require various color representation. In other

existing visualising software, they had implemented their own set of color maps. Moreover in

software like Paraview, those color map could be exported into a JSON file. The system allowed

users to import those color map in form of JSON file. After a user placed the JSON file in the

rsc/colorMapping directory, the system would parse the file into color map option and viewable in

the toolbar dynamically.

Figure 20: Color Map

5.4.5 System Preference

The system provided plenty of options to users, they could modify these preference through specific

edit dialog. These edit dialog could be found in the menu-bar.

Figure 21: System Preference Edit Dialog

Each Edit Dialog were designed for users to modify specific information of the system. The

System Preference Edit Dialog (Figure 21) allowed users to edit general information of the system.

31

The LVSFile edit dialog (Figure 22) was linked with FileItem edit dialog (Figure 23). Users

could view all the imported file along with its ID and path. Users would delete multiple file at

once but only updating one per time. By clicking the ”Edit” button, the dialog would link to the

FileItem edit dialog which could apply filter configurations.

Figure 22: LVSFile Edit Dialog

Figure 23: FileItem Edit Dialog

32

Lastly, the Movement Tracking Edit dialog allowed users to change the presented information

of movement tracking function (See section 5.4.3 for details). Users could click on the colored dot

to enable or disable the tracking on that hand feature. In default, the finger color was green and

palm color is blue. Meanwhile, only palms were indicated. We suggested to keep this configuration

in order to have a better control experience.

Figure 24: Movement Tracking Edit Dialog

33

5.4.6 System Learning Support

To help users to understand and learn the system, a tutorial would be provided to users when

the system launches. The tutorial showed the functionality of each button in the toolbar. It also

showed the interaction method of the system like zoom and rotation.

Figure 25: Tutorial Dialog

5.4.7 Presentation Mode

Presentation mode could be enable in either toolbar or menu-bar. The main difference of this mode

was the layout of the main frame. Normally, the main frame include three components (See section

5.4.1 for details), but in presentation mode except ”VTKPanel” all other components were hidden,

this created more space to display the data object.

34

5.4.8 Interaction Mechanism

The integrated gesture interface, had a unique interacting mechanism. This mechanism applied on

Flow Gesture and Three finger Gesture. The idea of this mechanism was creating neutral area in

the middle of the Main Frame. The neutral area was calculated by multiplying the interacting area

with a fixed ratio. When users perform those gestures, they could move their hand towards the

edges to control the object to rotate or move towards the same direction. The closer to the edge

the faster the rotation or translation speed. Although this mechanism was not humanized, it could

allow users to maintain a more robust interaction.

Figure 26: Interaction Mechanism

35

6 Testing

As mentioned in the section 4.2, in each stage a Unit Testing and Integration Testing had been

done. In the final stage, a Functional test and Usability test had also been carried out. In addition,

a test on gesture recognition rate had conducted as well. In the following subsections, for each test

we would discuss about the result and how it was implemented.

6.1 Unit Testing and Integration Testing

Both the Unit Tests and Integration Tests were conducted by using JUnit testing framework.

Unit Test Codes that perform basic operation were tested under Unit test. Both normal cases

and edge cases were tested for each method (if applicable). For example, in ”ObjectContour”,

the method generateRange() will calculate a list of exact values based on given range and step.

Therefore, two test cases had been setup on testing the performance with integer and double. All

the unit tests regarding the system were included in the package “test.unit”.

Integration Test Integration test focused on the interaction between different modules and

classes. However, many system inputs were in form of vision and also graphic representations.

Such that, only a limited numbers of test cases could be setup.

Figure 27: Example of JUnit Test

36

6.2 Functional Testing

As mentioned in previous subsection, many components could not be tested by the integration test.

Functional Test were used to cover those untested modules. The Functional Test were done after

the UI components of a specific functionality were fully integrated. The tests were conducted by

writing all test cases for a specific system functions and compared it to the actual result displayed

on the GUI with respective user input. Similar to other tests, both the normal cases and the edge

cases were tested thoroughly. Please find all the high-level Functional Test cases in the ”Additional

materials”.

The Functional Test were categories by GUI component and the function it interacted with. The

example test cases below showed the function that had interacted with the component VTK Panel.

For instance, when users used the import data model file function with file of VTK extension, the

system should had corresponding responses to the change. In this case, the VTK Panel should

display the imported file object immediately. The test passed when the correct object was being

displayed, or else the test failed if there was no object, wrong object displayed or even the system

crashed.

Figure 28: Example of Functional Test

The overall result of all 104 test cases were satisfying, almost all of the test cases had passed.

Except for case #3102, one of the testing file could not be decoded by the reader. To solve this, we

might need a period of time to study since other file with the same extension (.stl) works normally

in the system. Therefore, this individual file had been ignored at the moment.

37

6.3 Usability Testing

Usability test was one of the most effective way to improve the system. This could also help us to

achieve the expectation of different users. In order to gain feedback from different range of users,

testing was done across individuals of various visualisation and gesture control experience. Five

users with at least either visualisation or gesture control experience and five users with no such

experience had been invited for the test.

Throughout the test, only one tester managed to break the system. The reason of causing the

crash, was due to the compatibility problem of VTK with Java and OSX. The following table listed

the result of the test.

Questions Average Score

GUI design 3.7

”Look and Feel” 3.8

Performance 4.1

Gesture easy to memorise 3.3

System easy to learn 3.4

Gesture accuracy 3.5

The overall score of the test was around 3.6, some aspects were below mean, the reason mainly due

to the nature of visualizing software. Although, we had tried to implement a simple UI but users

still need a period of time to adapt to the system, especially for new users. In the meantime, we

noticed that there were still much room for us to improve the gesture management and performance.

Nevertheless, based on the feedback from users, we had summarised them in the following points:

• Gesture not humanised

• Gesture Tracking should provide more information (e.g. operation)

• GUI was too plain

• More Function should be implemented

38

6.4 Recognition Rate Testing

Considering our system was using an uncommon approach (See 5.2 for details) to perform gesture

analysis, we had conducted a series of tests to investigate the accuracy of our approach. We had

invited two users to participate in the test, one of them was a new user with no experience (User

1), another one was a trained user (User 2). Each user had to perform a list of operations, each

operation was performed repeatedly for 10 times. Those tested operations were cases we foresee

users would use most. If the user could complete the operation the trail would be recorded as

success. However, if the gesture lost track during any point of the test, that trail would be failed.

The test results and the operation list were recorded as below:

1. Perform Pointing Gesture and move from left to right

2. Perform Two Fingers Gesture and move towards the screen then backwards

3. Perform Stop Gesture for 5s

4. Perform Flow Gesture and rotate the object with sequence left,right,up,down

5. Swipe from left to right to switch actors

6. Click on the over-layer button

7. Perform Clap Gesture to terminate the system

Operation User 1 Success User 2 Success Total Success Recognition Rate(%)

1 10 10 20 100

2 10 10 20 100

3 5 10 15 75

4 7 9 16 80

5 10 10 20 100

6 2 5 7 35

7 4 7 11 55

With the aid of the results, there were several points we might conclude. First, some gestures

had a high recognition rate due to its significant feature like Pointing and Two Fingers. Secondly,

in general cases the gesture interface required time to learn, the recognition rate of the trained user

was relatively higher. However, we had also noticed that, under this approach some gestures with

similar feature might have higher chance to be failed like Three fingers and Four fingers. In short,

the gesture analysis and management still had much room for improvement. Furthermore, it was

not the only emphasis of this project, therefore, the result was acceptable.

39

7 Evaluation

Evaluation is an important section to assess the system. In general, we were able to follow most of

the original specification, and the system was successfully implemented. Our project had fulfilled

all the functional requirements and almost all non-functional requirements. However, due to com-

patibility problem, we had switched to use Swing and AWT rather than Qt to implement the GUI.

In this section, we are going to review the system based on several aspects. In section 7.1 we will

compare our system with other existing software in the market. Following by section 7.2, we will

evaluate the performance of the system. Finally, in section 7.3 we will discuss some specific aspects

of the system in the perspective of HCI and software engineering.

7.1 Related Work

There are couples of similar software in the market, but each of them are having various targeted

group of users, level of analysis and UI complexity (Figure 29).

Figure 29: Comparison table of related work

From the above table, we can see that most of the visualisation software with gesture interaction

are designed for surgical use only. For other academic use software, since these software aimed to

provide much variety to image analysis, all of them are having a complex UI and did not support

gesture interaction. In contrast to these software, our system managed to provide intermediate

image analysis with the aid of gesture interaction. In the meantime, our system’s target users

are student and researchers. A simple and clean GUI had been achieved, this can facilitate some

situations like a presentation. In current stage, we have only implemented the emphasis, therefore,

lacking of functionality our system are certainly not the best in the market. However, we believe

after further development, our system will be more competitive in the market.

40

7.2 System Performance

In this project, we have demonstrated a robust and efficient visualisation system. The system was

able to demonstrate a fast and significant visualisation process. When loading large data model

files, some system might took a long period of time or even crashed; some of them might be lagging

when users interacted with an object. Moreover, our system was reliable that rarely crashed.

This was achieved by the exception handling mechanism of our system. In order to achieve high

maintainability, our system was able to catch most of the exception and log it into a text file. The

text file could be sent to the developing team for further investigation. As mentioned above, there

were two types of exceptions unable to be caught. First, the VTK library support java development

by providing a Java Wrapping, but the core is still in C++. This type of exceptions were generated

inside the C++ core(Figure 30). Therefore, sometimes we were unable to identify the source of the

problem, and this to caused the delay of the development progress.

Figure 30: VTK exception

Another type of exception was generated by the Leap Motion API. These exceptions were caught

and hidden by the API. This made us to spend plenty of time to discover such unknown errors. For

instance, when we were trying to call some methods to get the hand features but there is no hand

being detected by the sensor.

On the hand, we are also aware of our system’s weakness. Although, we have implemented a

simple gesture interface, there are still a lot of limitations and managing problems. Some of the

gesture interaction is not smooth and accurate enough, or even not humanized as the expectation of

some users. In the meantime, though the VTK library provided various visualising algorithms, our

system’s functionality are still bounded to the library. In other words, the efficient and performance

of our system are limited by the library.

41

7.3 Other Aspect

7.3.1 Compatibility Problem and Limitation on Java Version

Java is a platform independent language, and both VTK and Leap Motion support Java develop-

ment. Initially, we thought that Java was the best language to implement the system. However,

during the development processes we have encountered several compatibility problems. First, the

Java developers have abandoned some old graph draw methodology after version 1.7, which VTK

library relied on these method. Therefore, around 50% of the time, when users launched our system

under Java version 1.7 or above, the system had crashed (Figure 31).

Figure 31: VTK compatibility with OSX and Java

This problem has been known by the VTK library developing team for at least 5 years, yet, no

solutions have ever been found or made. In addition, there were only a few VTK developers using

Java on OSX. Hence, it cost us much effort to investigate it, and we had spent a couple of months

to find the solution. The solution was to launch the system under Java version 1.6, and we realises

that this might cause inconvenient to users. However, we have no other solution unless re-creating

the project with a different programming language.

Another example was about the Qt library. Qt is a popular GUI framework among VTK

42

developers that written in C++. It has a Java interface called QtJambi. However, it was well

known by the library developing team that QtJambi could not function normally under some OSX

machines. The problem was described as ’incompatible with some OSX architecture’. In the

meantime, QtJambi itself did not include an essential class ”VTKCanvas” that required by VTK.

Such that, during the VTK developing stage, we had to abandon the Qt GUI and re-creating it by

Swing and AWT.

The whole compatibility problem consumed a large part of the project developing time. Even-

tually, we can still complete the whole system on time, but it indicated that Java was not the best

option.

7.3.2 Distribution on Mac

In Java, a software can be distributed by extracting the source code into a Jar file. The Jar file

contains all the implemented classes, other used Libraries (Jar File) and the project configurations.

Since VTK and Leap Motion are not built on Java, additional native libraries and specific configu-

rations are required. However, a recent update on OSX states that after version 10.11 El Capitan,

due to a new security measure, all configuration on dynamic linker (dyld) environment variables is

not possible unless System Integrity Protection (SIP) is disabled. These cause our system will only

be able to be distributed on older OSX versions only. The following diagrams show the results by

applying the same configuration under OSX version 10.9 and 10.11.

Figure 32: LVS on OSX 10.9

43

Figure 33 : LVS on OSX 10.11

From Figure 32, we can see that under OSX 10.9, the system could be launched normally after

pointing the system variable $DYLD LIBRARY PATH to the VTK native libraries. But in Figure

33, we discovered that the machine was unable to locate the native libraries under OSX 10.11, where

the $DYLD LIBRARY PATH was not used due to the new security measure. Also, we noticed that

the program will check the directory where the native libraries were generated. However, that path

is unreachable for users because it was hard coded in the libraries where user will not be able to

change it. Therefore, our system cannot be distributed on OSX 10.11 and onwards. This problem

cannot be resolved unless Apple releases a new version that changes the setting or the users generate

the native libraries and replace the vtk.jar by themselves. Resulting from these, we can only focus

on the distributions on OSX versions before El Capitan.

7.3.3 Gesture Limitation & Management

As mentioned in section 5.2 we have used a very unique methodology to implement the gesture

analysis. In section 6.4, we have proposed a simple test to measure the recognition rate briefly.

The performance of the test was satisfying and the overall recognition rate could achieve over 80%.

In fact, we have foreseen the limitations and problems of this approach. Although this approach

helped us to implement the gesture interface in a short time, which only nine of them has been

implemented. If the number of gestures increases, the performance of this approach may have

significantly decreases. Meanwhile, when the number of gestures or the complexity of a specific

44

gesture increased, it will be harder for us to setup the checking conditions. This means it may

cost us much effort to implement those gestures than collecting a training set. Further work has

to be done in order to analyse the performance of this approach comparing with other traditional

approach.

Gesture management is another important issue we have to consider. Since there are two types of

gestures, Static and Dynamic, where Dynamic Gesture is actually involving multiple Static Gesture

recognition as to identify the start status and end status. Therefore, if a system is including both

type of gestures, a good mechanism have to be used to manage the transition from one gesture to

another. For instance, a Static Gesture holds an input control like the left key of the mouse. The

next frame or the next gesture has to respond to this situation, like releasing the input control.

If not, the system may perform some action that the user does not wish to be done. The current

mechanism is recording the previous gesture type, if the next incoming gesture is not the same,

relative control will have to be released. This mechanism is not proven or tested, therefore, we

should still continue to seek for other valid options.

45

8 Discussion & Future Work

8.1 Programming Language for Implementation

Referring to the compatibility problems mentioned in section 7.3.1, Java might not be the best

language to implement the system. If much time was given, we would re-create the project using

C++. The reason of choosing C++ is, both VTK and Qt was written in C++, it will be more

convenient for us to find out the errors and saving our time to solve them. In the meantime, we will

also like to study other visualisation libraries to explore more functions that could be implemented.

8.2 Gesture vs Mouse

It is not easy to maintain an accurate gesture interface with high gesture variety. People might

think that using a mouse can perform the same operation with higher accuracy. However in the

perspective of HCI, Naturalness is an important aspect that we have to consider in modern software

or system. Also, in some situations users might not prefer to use a mouse, for instance, a surgeon.

Under these situations, a gesture interface provides a more natural interaction to users. Still, the

accuracy and functionality of the current gesture interface requires more work to be completed. At

the moment, it will be better to use the gesture interface to assist some operations like a touch-pad

of a MacBook. Unless these deficiencies has been overcome, the gesture interface can only be acted

as a supporting control instead of the only or main control.

8.3 Gesture Management

Following the previous sections, the gesture interface could be improved in many ways. One of them

will be an idea of Gesture and Gesture command [21]. A gesture means a specific hand pose with

significant feature, whilst gesture command can be treated as an action or a Dynamic Gesture.

For instance, when a user performs a Pointing Gesture or a Two Fingers Gesture with a Click

Command to accomplish two different operations. With this combination, the system can provide

more variety of controls rather than analyse them linearly.

Another improvement that can be made is the mapping mechanism. The current mapping

method was hard coding the operation in the gesture model. Although the developer may change

the operation easily, users do not have the access right to the source code. To overcome this, a

hash map can be used to map the gestures and the operations. This will also allow users to map

the frequently used functions with the most comfortable gestures.

Lastly, as to improve the system accuracy, we may compare the approach that currently using

with others. Another way will be combining them into a new approach. But all this proposed idea

requires more time to be implemented and thoroughly tested.

46

9 Conclusion

In this project, we have demonstrated a robust visualisation system with a gesture interface. The

overall performance of the system have been achieved as expected (See section 6 for details). In

fact, there are several areas that we can improve (See section 7 & 8 for details). First, the gesture

analysing approach currently using requires more effort to be tested and modified. Secondly, the

functionality of the system can be enriched. Thirdly, throughout the development processes, we

have experienced various compatibility problems. It indicated that Java might not be the best

language to implement the project. Therefore, if we were given an opportunity to re-do the project,

we would like choose C++ as the implementation language. These might speed up the development

progress and result in enhancement on all aspects of the system, especially the GUI. Nevertheless,

we were still able to complete the project and fulfilling most of the original specifications.

47

10 Bibliography

[1] Alex Colgan (9th August 2014) How Does the Leap Motion Controller Work?. Available

at: http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-

work/. Last accessed 4th April 2016.

[2] ByungWoo Min, HoSub Yoon, Jung Soh, TakeShi Ohashi and Toshiaki Ejima. (1999). Visual

Recognition of Static/Dynamic Gesture: Gesture-Driven Editing System. Academic Press.

[3] Feng Sheng Chen, Chih Ming Fu and Chung Lin Huang. (2003). Hand Gesture Recognition

Using a Real-Time Tracking Method and Hidden Markov Models. Elsevier B.V.. Taiwan, ROC.

[4] Giulio Marin, Fabio Dominio and Pietro Zanuttigh. (2014). Hand Gesture Recognition with

Leap Motion and Kinect Devices. Image Processing (ICIP). Paris.

[5] James M. Rehg and Takeo Kanade. (1994). Visual Tracking of High DOF Articulated Struc-

tures: An Application to Human Hand Tracking. Springer Berlin Heidelberg.

[6] Java SDK Documentation. Available at:

https://developer.leapmotion.com/documentation/java/index.html. Last accessed 4th April

2016.

[7] Javier Varona, Antoni Jaume-i-Capò, Jordi Gonzàlez and Francisco J. Preales. (2008). Toward

Natural Interaction through Visual Recognition of Body Gestures in Real-time. Elsevier B.V.

Spain.

[8] Jintae Lee and Tosiyasu L. Kunii. (1993). Constraint-Based Hand Animation. 3, p110 - 127.

Springer Japan. Tokyo.

[9] Juan Wachs, Helman Stern, Yael Edan, Michael Gillam, Craig Feied, Mark Smith and Jon

Handler. (2007). Real-Time Hand Gesture Interface for Browsing Medical Images. Springer

Berlin Heidelberg. Israel.

[10] Juan Wachs, Helman Stern, Yael Edan, Michael Gillam, Craig Feied, Mark Smith and Jon Han-

dler. (2007). Gestix: A Doctor-Computer Sterile Gesture Interface for Dynamic Environments.

Springer Berlin Heidelberg. Israel.

[11] K. K. Biswas and Saurav Kumar Basu. (2011). Gesture Recognition using Microsoft Kinect.

Automation, Robotics and Applications (ICARA). Wellington.

[12] Kitware, Inc. Available at: http://www.vtk.org/wp-content/uploads/2015/04/file-

formats.pdf. Last accessed 4th April 2016.

48

[13] Kitware, Inc. (2010). VTK User’s Guide. Colombia - Latin America: Kitware, Inc.

[14] Maryam Khademi, Lucy Dodakian, Hossein Mousavi Hondori, Cristina V. Lopes, Alison

McKenzie and Steven C. Cramer. (2014). Free-Hand Interaction with Leap Motion Controller

for Stroke Rehabilitation. ACM. New York, USA.

[15] Matthew Turk and Mathias Kölsch. (2004). Emerging Topics in Computer Vision: Prentice

Interface. 10, p455 - 519. Prentice Hall PTR Upper Saddle Rive. NJ, USA.

[16] Michal Roth and William T. Freeman. (1994). Orientation Histograms For Hand Gesture.

Mitsubishi Electric Research Labs. Cambridge, UK.

[17] Moniruzzaman Bhuiyan and Rich Picking. (2009). Gesture-controlled user interfaces, what

have we done and what’s next?. Glyndŵr University. Wrexham.

[18] Particleincell (16th December 2011). Data Visualization with Java and VTK. Available at:

https://www.particleincell.com/2011/vtk-java-visualization/. Last accessed 4th April 2016.

[19] Pragati Garg, Naveen Aggarwal and Sanjeev Sofat. (2009). Vision Based Hand Gesture Recog-

nition. Springer Netherlands.

[20] Shahram Jalaliniya, Lars Büthe, Jeremiah Smith, Thomas Pederson and Miguel Sousa.

(2013).Touch-less Interaction with Medical Images Using Hand & Foot Gestures. ACM. New

York, USA.

[21] Thomas Baudel and Michel Beaudouin-Lafon. (1993). CHARADE: Remote Control of Objects

using Free- Hand Gestures. ACM. New York, USA.

[22] Vladimir I. Pavlovic, Rajeev Sharma and Thomas S. Huang. (1997). Interpretation of Hand

Gestures for Human-Computer Interaction a Review. 19, p677 - 695. IEEE Transactions on

Pattern Analysis and Machine Intelligence.

[23] VTK-Users. Available at: http://vtk.1045678.n5.nabble.com/VTK-Users-f1224199.html. Last

accessed 4th April 2016.

[24] VTK Wiki. Available at: http://www.vtk.org/Wiki/VTK. Last accessed 4th April 2016.

[25] Will Schroeder, Ken Martin and Bill Lorensen. (2006). The Visualization ToolKit. USA. Person

Education, Inc.

[26] Ying Yin and Randall Davis. (2010). Toward Natural Interaction in the Real World: Real-time

Gesture Recognition. ACM. New York, USA.

49

[27] Yuxuan Huang, Zhongpan Qiu, Zhijun Song. (2011). 3D reconstruction and visualisation from

2D CT images. IT in Medicine and Education (ITME). Cuangzhou.

[28] Zhou Ren and Junsong Yuan. (2011). Robust Hand Gesture Recognition Based on Finger-Earth

Mover’s Distance with a Commodity Depth Camera. ACM. New York, USA.

[29] Zhou Ren, Jingjing Meng, Junsong Yuan. (2011). Robust Hand Gesture Recognition with

Kinect Sensor. ACM. New York, USA.

50

11 Appendix

11.1 System Requirement

• Operation Platform : OSX

• Version : any version before 10.11 (El Capitan)

• Java Version : 1.6

• Device : Leap Motion Controller

11.2 Structure of Zip

1. Additional Materials.pdf - All additional materials including Gantt Chart, Functional Test

Cases, UML Diagrams and Manuals

2. LVS Beta1.2 - Directory containing the binary version of LVS

3. LVS Source - Directory containing the source version of LVS

4. SVN Path - File containing the address of the project’s SVN repository

5. TestingDataFiles - Directory containing some data model file that can be used to test the

system.

11.3 Installation

In order to launch the software, users have to install java version 1.6. The Java SE Development

Kit is aviable at: https://support.apple.com/kb/dl1572?locale=en_US

After the user has installed the Java version 1.6, the user can go to the Binary Version directory

via terminal and run the LVS.sh to launch the system. Alternatively, if users have installed other

version of Java 1.6, they can either change the shell-script or input the following commands to

launch the application.

1. export JAVA HOME=‘/usr/libexec/java home -v 1.6.0 YOUR VERSION NUMBER‘

2. export DYLD LIBRARY PATH=$DYLD LIBRARY PATH:$(pwd)/lib/vtk

3. java -jar LVS Beta1.2.jar

51

https://support.apple.com/kb/dl1572?locale=en_US

	List of Abbreviations
	Introduction
	Project Aims
	Project Overview
	Motivation
	Report Outline

	Literature Review
	Gesture Analysis
	Motion Detectors
	Visualisation Toolkit

	Problem Analysis
	Solution Design
	Methodology
	Project Plan
	System Architecture
	GUI Design

	Implementation
	Overview
	Gesture Analysis
	Visualising with Visualisation Toolkit
	Integrated System

	Testing
	Unit Testing and Integration Testing
	Functional Testing
	Usability Testing
	Recognition Rate Testing

	Evaluation
	Related Work
	System Performance
	Other Aspect

	Discussion & Future Work
	Programming Language for Implementation
	Gesture vs Mouse
	Gesture Management

	Conclusion
	Bibliography
	Appendix
	System Requirement
	Structure of Zip
	Installation

